A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer.

نویسندگان

  • D Z Naigamwalla
  • G Chaconas
چکیده

Mu DNA transposition occurs within the context of higher order nucleoprotein structures or transpososomes. We describe a new set of transpososomes in which Mu B-bound target DNA interacts non-covalently with previously characterized intermediates prior to the actual strand transfer. This interaction can occur at several points along the reaction pathway: with the LER, the Type 0 or the Type 1 complexes. The formation of these target capture complexes, which rapidly undergo the strand transfer chemistry, is the rate-limiting step in the overall reaction. These complexes provide alternate pathways to strand transfer, thereby maximizing transposition potential. This versatility is in contrast to other characterized transposons, which normally capture target DNA only at a single point in their respective reaction pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on a "jumping gene machine": higher-order nucleoprotein complexes in Mu DNA transposition.

Studies in my lab have focused on DNA transposition in the bacterial virus, Mu. In vitro studies have shown that Mu DNA transposition is a three-step process involving DNA breakage, strand transfer and DNA replication. In the first step, a nick is introduced at each end of the transposon. The liberated 3'-OH groups subsequently attack a target DNA molecule resulting in strand transfer. The tran...

متن کامل

The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.

The chemistry of Mu transposition is executed within a tetrameric form of the Mu transposase (MuA protein). A triad of DDE (Asp, Asp35Glu motif) residues in the central domain of MuA (DDE domain) is essential for both the strand cleavage and strand transfer steps of transposition. Previous studies had suggested that complete Mu transposition requires all four subunits in the MuA tetramer to car...

متن کامل

Target DNA bending by the Mu transpososome promotes careful transposition and prevents its reversal

The transposition of bacteriophage Mu serves as a model system for understanding DDE transposases and integrases. All available structures of these enzymes at the end of the transposition reaction, including Mu, exhibit significant bends in the transposition target site DNA. Here we use Mu to investigate the ramifications of target DNA bending on the transposition reaction. Enhancing the flexib...

متن کامل

RAG1/2-Mediated Resolution of Transposition Intermediates Two Pathways and Possible Consequences

During B and T cell development, the RAG1/RAG2 protein complex cleaves DNA at conserved recombination signal sequences (RSS) to initiate V(D)J recombination. RAG1/2 has also been shown to catalyze transpositional strand transfer of RSS-containing substrates into target DNA to form branched DNA intermediates. We show that RAG1/2 can resolve these intermediates by two pathways. RAG1/2 catalyzes h...

متن کامل

Single Active Site Catalysis of the Successive Phosphoryl Transfer Steps by DNA Transposases Insights from Phosphorothioate Stereoselectivity

The transposase family of proteins mediate DNA transposition or retroviral DNA integration via multistep phosphoryl transfer reactions. For Tn10 and phage Mu, a single active site of one transposase protomer catalyzes the successive transposition reaction steps. We examined phosphorothioate stereoselectivity at the scissile position for all four reaction steps catalyzed by the Tn10 transposase....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 17  شماره 

صفحات  -

تاریخ انتشار 1997